Online Courses
Free Tutorials  Go to Your University  Placement Preparation 
Goeduhub's Online Courses @ Udemy in Just INR 570/-
Online Training - Youtube Live Class Link
0 like 0 dislike
4.2k views
in Python Programming by Goeduhub's Expert (2.2k points)
edited by

This assignment is for visualization using Python Matplotlib Library

  1. Load the necessary package for plotting using pyplot from matplotlib. Example - Days(x-axis) represents 8 days and Speed represents a car’s speed. Plot a Basic line plot between days and car speed, put x axis label as days and y axis label as car speed and put title Car Speed Measurement.

         Days=[1,2,3,4,5,6,7,8]

         Speed=[60,62,61,58,56,57,46,63]​​​​​

     2. Now to above car data apply some string formats  like line style example green dotted line, marker shape like +, change markersize, markerface color etc.

   3. Plot Axes Labels, Chart title, Legend, Grid in Car minimum, Maximum and average speed in 8 days.

days=[1,2,3,4,5,6,7,8]

max_speed=[80,91,92,88,77,79,76,75]

min_speed=[42,43,40,42,33,36,34,35]

avg_speed=[46,58,57,56,40,42,41,36]

4. Plotting a basic sine graph by adding more features. Adding Multiple plots by Superimposition like cosine wave.

5. Plot Simple bar chart showing popularity of Programming Languages.

Languages =['Python', 'SQL', 'Java', 'C++', 'JavaScript']

Popularity = [56, 39, 34, 34, 29]

Security = [44 ,36 ,55, 50, 42]

Plot Multiple Bars showing Popularity and Security of major Programming Languages. Also Create Horizontal bar chart using barh function.

6.  Plot Histogram, We have a sample data of Students marks of various Students, we will try to plot number of Students by marks range and try to figure out how many Students are average, below-average and Excellent.

Marks = [ 61,86,42,46,73,95,65,78,53,92,55,69,70,49,72,86,64]

Histogram showing Below Average, Average and Execellent distribution

40-60: Below Average

60-80: Average

80-100: Excellent

7.  Titanic Data Set Download Data

 Load the data file

 (i) Create a pie chart presenting the male/female proportion 

 (ii) Create a scatterplot with the Fare paid and the Age, differ the plot color by gender

Goeduhub's Top Online Courses @Udemy

For Indian Students- INR 360/- || For International Students- $9.99/-

S.No.

Course Name

 Coupon

1.

Tensorflow 2 & Keras:Deep Learning & Artificial Intelligence

Apply Coupon

2.

Natural Language Processing-NLP with Deep Learning in Python Apply Coupon

3.

Computer Vision OpenCV Python | YOLO| Deep Learning in Colab Apply Coupon
    More Courses

3 Answers

0 like 0 dislike
by (342 points)
selected by
 
Best answer

1. Question

import matplotlib.pyplot as plt # Import Required Package

Days = [1,2,3,4,5,6,7,8]

Speed = [60,62,61,58,56,57,46,63]

plt.plot(Days, Speed, color = 'blue') # For Create a Line Plot

plt.xlabel('Days')

plt.ylabel('Car Speed')

plt.title('Car Speed Measurement')

plt.show()

2. Question

Days = [1,2,3,4,5,6,7,8]

Speed = [60,62,61,58,56,57,46,63]

plt.plot(Days, Speed, color = 'blue', marker = 'o', ms = 20, mec = 'red', mfc = 'green', linestyle = 'dotted', linewidth = 3.5)

plt.xlabel('Days') # ms for marker size, mfc for marker face color, mec for border color

plt.ylabel('Car Speed')

plt.title('Car Speed Measurement')

plt.show()

3. Question

days = [1,2,3,4,5,6,7,8]

max_speed = [80,91,92,88,77,79,76,75]

min_speed = [42,43,40,42,33,36,34,35]

avg_speed = [46,58,57,56,40,42,41,36]

plt.figure(figsize=(8,6))

plt.subplot(2,1,1)

plt.plot(Days, max_speed, color = 'red', marker = '*', ms = 10, mec = 'red', mfc = 'orange', label = 'Maximum Speed')

plt.xlabel('Days')

plt.ylabel('Maximum Speed')

plt.title('Car Speed Measurement')

plt.legend()

plt.grid()

plt.show()

plt.figure(figsize=(8,6))

plt.subplot(2,1,2)

plt.plot(Days, min_speed, color = 'green', marker = 'o', ms = 10, mec = 'black', mfc = 'blue', label = 'Minimum Speed')

plt.xlabel('Days')

plt.ylabel('Minimum Speed')

plt.title('Car Speed Measurement')

plt.legend()

plt.grid()

plt.show()

plt.figure(figsize=(8,6))

plt.subplot(2,1,1)

plt.plot(Days, avg_speed, color = 'yellow', marker = '^', ms = 10, mec = 'red', mfc = 'orange', label = 'Average Speed')

plt.xlabel('Days')

plt.ylabel('Maximum Speed')

plt.title('Car Speed Measurement')

plt.legend()

plt.grid()

plt.show()

4. Question

x = np.arange(0,4*np.pi,0.1)  

y = np.sin(x)

z = np.cos(x)

plt.plot(x,y, color = 'green', marker='o')

plt.plot(x,z, color = 'blue', marker = '*')

plt.xlabel('Sin and Cos Value From 0 to 4pi')

plt.ylabel('Sin(x) and Cos(x)')

plt.title('Sin And Cosine Wave')

plt.legend(['sin(X)','Cos(x)'])

plt.show()

5. Question

Languages =['Python''SQL''Java''C++''JavaScript']

Popularity = [5639343429]

Security = [44 ,36 ,555042]

plt.subplot(2,1,1)

plt.bar(Languages, Popularity, width=0.5, color = 'orange', align='center')

plt.xlabel('Languages')

plt.ylabel('Popularity')

plt.legend(['Popularity'])

plt.show()

plt.subplot(2,1,2)

plt.bar(Languages, Security, width=0.5, color = 'red', align='center')

plt.xlabel('Languages')

plt.ylabel('Security')

plt.legend(['Security'])

plt.show()

Horizontal Bar

Languages =['Python''SQL''Java''C++''JavaScript']

Popularity = [5639343429]

Security = [44 ,36 ,555042]

plt.subplot(2,1,1)

plt.barh(Languages, Popularity, color = 'g', align='center')

plt.xlabel('Languages')

plt.ylabel('Popularity')

plt.legend(['Popularity'])

plt.show()

plt.subplot(2,1,2)

plt.barh(Languages, Security, color = 'red', align='center')

plt.xlabel('Languages')

plt.ylabel('Security')

plt.legend(['Security'])

plt.show()

0 like 0 dislike
by (342 points)

6. Question

Marks = np.array([61,86,42,46,73,95,65,78,53,92,55,69,70,49,72,86,64])

below_avg = Marks[np.logical_and(Marks >= 40, Marks < 60)]

avg_marks = Marks[np.logical_and(Marks >= 60, Marks < 80)]

exe_marks = Marks[np.logical_and(Marks >= 80, Marks <= 100)]

plt.hist(Marks)

plt.show()

print('Below Average Students Are : ',below_avg.size)

print('Average Students Are : ',avg_marks.size)

print('Execelent Students Are : ',exe_marks.size)

7. Question

import pandas as pd

df = pd.read_csv('/content/train.csv')

df.head()

df['Sex']

x = df.Sex.value_counts()

x

plt.pie(x, autopct='%.0f%%')

plt.legend(['Male','Female'])

plt.title('Male And Female Proportion')

plt.show()

male = df[df['Sex']=='male']

male.Sex.value_counts()

female = df[df['Sex']=='female']

female.Sex.value_counts()

plt.scatter(male.Fare, male.Age, label = 'Male', marker = '*')

plt.scatter(female.Fare, female.Age, label = 'Female', marker = '^')

plt.legend()

plt.xlabel('Fare')

plt.ylabel('Age')

plt.grid()

plt.show()

3.3k questions

7.1k answers

394 comments

4.6k users

Related questions

 Goeduhub:

About Us | Contact Us || Terms & Conditions | Privacy Policy || Youtube Channel || Telegram Channel © goeduhub.com Social::   |  | 
...